1. A home security security code. How	company offers a se many different secu	ecurity system that uses the urity codes are possible if n	numbers 0 through o digit may be repe	6, inclusive, for a 3-ated?	digit
a) 35	b)210	c) 20	d) 120	7P3	
2. Using a standard and then selecting a	deck of playing car	ds, find the probability of re	andomly selecting a	queen, replacing it	in the deck,
a) $\frac{1}{26}$	$\frac{1}{52}$	c) $\frac{1}{17}$	d) $\frac{1}{4}$	<u>4</u> . <u>13</u> 52	
3. Josie has 2 classi the probability that	cal, 3 jazz, and 1 follooth CDs are jazz?	lk CD in her car. If she pull	s 2 CDs from her C	D case without look	ing, what is
a) $\frac{1}{5}$				3 . 2 5	
not be blue?	yellow, 4 blue, and	3 white marbles. What is the	ne probability that a	marble selected at re	andom will
a) $\frac{2}{3}$	b) $\frac{2}{9}$	c) $\frac{4}{9}$	$\bigcirc \frac{5}{9}$		
5. Find the number	of distinguishable p	permutations using the lette	rs from the word Ro	OBMURRO.	
a) 13,440	b) 3360	c) 40,320	d) 5040	3! 2!	•
6. A committee commany different com a) 2,074,800		d 3 women is to be selected ed? (c)2,713,200		0 men and 16 women	*
7. How many ways a) 90,000	can 5 digits on a lic b) 100,000	cense plate be arranged if the	ne first digit cannot d) 45360	be 0? (digits can repo	eat)
card is a black face	card?	f 52 cards. What is the prob	34		he second
9. From a standard of10. Joe gets \$2 if aa) \$1.00	deck of 52 cards, a constant of the coin shows up head b) \$1.25	sard is dealt. What is the property of the state of the s	cobability that a red What is his expect (d) \$1.50 $2\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right)$	cted value?	wn?
a) minimum = -6 b) minimum = -6 c) minimum = -6	, median = 3, maxim , maximum = 11, m , lower quartile = -4 = -4, upper quartile	, -3, -6}, find the 5-number num = 11, range = 17, mea lean = 2.33, median = 3, modian = 3, upper quartil = 7.5, mean = 2.33, minim	n = 2.33 ode = none e = 7.5, maximum = um = -6, maximum		
	ing Kari	Billia Maria (1808) Riber (1808)	1.3 4 01) - 12.225	3 27	

12. Use the frequency table to find the mean, median, and mode	

Aptitude Score	1	2	3	4	5
Frequency	2	1	3	5	2

a) mean = 3median = 3

mode = none

b) mean = 3median = 4 c) mean = 3.3median = 4

d) mean = 3.3 median = 3

mode = 4

mode = 4

mode = 4

13. Find the range and the interquartile range of the set of values: 37, 21, 44, 19, 22, 47, 26, 32, 25, 43, 11, 15

a) range: 37, interquartile range: 16

b) range: 36, interquartile range: 16 Min = (1

c) range: 36, interquartile range: 20

d) range: 36, interquartile range: 24 Max= 47

14. The lengths of a certain species of fish were found to be normally distributed. The mean length is 99 cm with a standard deviation of 14 cm. In a school of 480 of these fish, about how many would be longer than 127 cm?

a) 65 fish

b) 163 fish

c) 468 fish

(d) 12 fish

480 (.025)

15. Which method would produce the least biased sample of a school population of 1000 students?

a) One student from each letter of the alphabet

b) all the members of faculty are selected.

(by last name) are selected.

c) all the student body officers are selected.

d) all the members of the archery club are selected.

16. Identify the outlier of the set of values: 55, 57, 40, 47, 39, 38, 72

b) 72

d) none of the above

17. Write an exponential function to model this situation: a population of 300 animals increases at an annual rate of

a) $f(x) = 300(0.113)^x$ b) $f(x) = 300(.87)^x$

c) $f(x) = 300(0.087)^x$

d) $f(x) = 300(1.13)^x$

18. Find the domain of the function: $f(x) = \sqrt{x-1}$ X - 1 = 0 X = 1 a) $(0,1) \cup (1,\infty]$ b) $(1,\infty)$ c) $[0,1) \cup (1,\infty)$ d) $[1,\infty)$

19. The graph $y = x^3 - 9x - 3$ is increasing between what interval/s?

a) $(-\infty, 7.39] \cup [-13.39, \infty)$ (b) $(-\infty, -1.73] \cup [1.73, \infty)$ c) [-1.73, 1.73]

d) [-13.39,7.39]

 $f(x) = \begin{cases} 6 & \text{if } x < 2 \\ 4x - 1 & \text{if } x \ge 2 \end{cases}$ 20. Evaluate the piecewise function at f(0), f(2), and f(3).

a) f(0) = -1f(2) = 6

d) f(0) = 6f(2) = 7

f(3) = 11

b) f(0) = 6 c) f(0) = 0 f(2) = 7 f(2) = 6 f(3) = 11 f(3) = cannot determine

f(3) = 7

21. Graph the previous piecewise function and state the domain and range.

D: (-00,00) R: [6]U[7,00) 22. A silk-screen shop charges an initial fee of \$10 to create the silk screen and \$8.50 per shirt for the first 25 shirts. If you decide to purchase more than 25 shirts, the price goes down to \$7.75 per shirt (after the first 25 shirts are purchased). Write a function that gives the cost, C, for an order of x shirts. How much does it cost to purchase 20 shirts? 40 shirts? $C(X) = \begin{cases} 10 + 8.50X & \text{; } 0.50 \\ 222.50 + 7.75(X-25) & \text{; } 208.2026 \\ \text{(A)} = \frac{5}{338} \\ \text{(B)} = \frac{5}{338} \\ \text$

a)
$$\frac{7\pi}{12}$$

(b)
$$\frac{-7\pi}{12}$$

c)
$$\frac{7\pi}{6}$$

d)
$$\frac{-12}{7\pi}$$

50. State the amplitude and period for the function $y = -3 \sin 3\theta$.

a) -3;
$$\frac{3\pi}{2}$$

b) -3,
$$\frac{2\pi}{3}$$

c) 3,
$$\frac{3\pi}{c^2}$$

$$\frac{3}{3}$$
 d) 3, $\frac{2\pi}{3}$

51. Find 7A + 6B.

$$A = \begin{bmatrix} 1 & -1 \\ 0 & -3 \\ 5 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 1 \\ 5 & 4 \\ 0 & -7 \end{bmatrix}$$

c.
$$\begin{bmatrix} -5 & -1 \\ -30 & -45 \\ 35 & 56 \end{bmatrix}$$

b.
$$\begin{bmatrix} -5 & -1 \\ 0 & 3 \\ 0 & -28 \end{bmatrix}$$

$$\begin{array}{c|cccc}
d & 56 \\
-5 & -1 \\
30 & 3 \\
35 & -28
\end{array}$$

$$\begin{bmatrix} -14 & -w^2 \\ 3f & 3 \end{bmatrix} = \begin{bmatrix} 2k & -81 \\ -3 & 3 \end{bmatrix}$$

52. Solve for the missing variables

a.
$$f = -1, k = 7, w = 9 \text{ or } -9$$

b.
$$f = -1, k = -7, w = 9$$

c.
$$f = -1$$
, $k = -7$, $w = 81$ or -81
d. $f = -1$, $k = -7$, $w = 9$ or -9

53.

Mel and Ann were having breakfast at a restaurant. Mel paid \$3.25 for 4 eggs and 2 sausage patty. Ann paid \$3.50 for 2 eggs and sausage patties. Which of the following equations could be solved to determine the cost of each item?

a)
$$\begin{bmatrix} 4 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3.25 \\ 3.50 \end{bmatrix}$$
 b) $\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3.25 \\ 3.50 \end{bmatrix}$ c) $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 3.25 & 3.50 \end{bmatrix}$

c)
$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 3.25 & 3.50 \end{bmatrix}$$

d)
$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3.25 & 3.50 \end{bmatrix}$$

54.

Given the matrix equation $\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ what would you multiply both sides by to solve the system using

$$A^{-1} = \begin{bmatrix} 1/5 & 1/5 \\ -2/5 & 3/5 \end{bmatrix}$$

the inverse matrix method? $A^{-1} = \begin{bmatrix} 1/5 & 1/5 \\ -2/5 & 3/5 \end{bmatrix}$ 55. Find the domain of the following function, $f(x) = \frac{4}{3x - 7}$. 3x - 7 = 0 $x = \frac{1}{3}$

$$3x-1=0$$

$$x=\sqrt{3}$$

A)
$$\left(-\infty, \frac{7}{3}\right]$$

B)
$$(-\infty, \frac{7}{3}] \cup [\frac{7}{3}, \infty]$$

B)
$$(-\infty, \frac{7}{3}] \cup [\frac{7}{3}, \infty)$$
 C) $(-\infty, \frac{7}{3}) \cup (\frac{7}{3}, \infty)$

D)
$$(\frac{7}{3}, \infty)$$

56. Find the domain of the following function:

$$f(x) = \frac{\sqrt{x}}{x^2 - 14x + 40}$$

$$\chi^2 - [4x + 40]$$

$$(x - 10)(x - 4)$$

$$\chi^2 - [4\chi + 40]$$

- A) $(-\infty,4) \cup (4,10) \cup (10,\infty)$ B) (4,10)C) $[0,4) \cup (4,10) \cup (10,\infty)$ D) $[0,4) \cup (10,\infty)$

- 57. Juliet plans to buy a supply of blank compact discs. She checked price lists and found out that if she bought 100 CD's or less that it would cost her \$.70 each. However, if she buys between 100 and 200 CD's, the price drops to \$.65 each for the second hundred. Also, for any purchase of more than 200, the price drops again to \$.61 for each one over 200. What is the cost for Juliet to purchase 260 compact discs?
 - A) \$152.00
 - B) \$182.00

- 58. Write a piecewise function for the scenario in number 57.

$$f(x) = \begin{cases} 0001 & .70 \text{ x} ; 0 < x \le 100 \\ 70 + .65(x-100); 100 < x \le 200 \\ 135 + .61(x-200); x > 200 \end{cases}$$

- 59. If the function $f(x) = \sqrt{x}$ is reflected over the x-axis, shifted to the left 2 units and shifted up 3 units, what new function, g(x) should be obtained?
 - A) $g(x)=3-\sqrt{x+2}$ B) $g(x)=3+\sqrt{-x+2}$

 - C) $g(x)=3-\sqrt{x-2}$
 - D) $g(x)=3+\sqrt{x+2}$
- 60. Graph the following functions:

b) $f(x) = -\cos(x) - 1$

61. Evaluate

$$\begin{vmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ -1 & -2 & 0 \end{vmatrix} = \emptyset$$

62. Solve the following system using Cramer's rule. Do not use a calculator.
$$z = -3x + 3y + 11$$
 $3x - 3y + 7 = 11$ $0 = 13$

$$-3x + 7y - 7z = 3$$

$$-2x + 2y - 6z = 30$$

$$X = \frac{64}{64} = -1$$

$$7 = \frac{448}{64} = -1$$

$$Dx = \begin{bmatrix} 11 & -3 & 1 & -2 & 2 & -64 \\ 3 & 7 & -7 & -2 & 2 & -64 \end{bmatrix} = -64$$

$$Dx = \begin{bmatrix} 11 & -3 & 1 & -2 & 2 & -64 \\ 3 & 2 & -6 & 2 & -64 \end{bmatrix} = -64$$

$$Dx = \begin{bmatrix} 11 & -3 & 1 & -2 & 3 & -7 \\ 30 & 2 & -6 & 2 & -64 \end{bmatrix} = -64$$

63. The first number multiplied by 2 is the opposite of the second number. The third number is subtracted from the product of the second number and 3 to get 20. The sum of the first and third numbers is -5. Use a matrix equation to solve for these three numbers.

$$2X = -y \Rightarrow 2X + y + 0 = 0$$

$$3y - 7 = 20 \Rightarrow 0x + 3y - 7 = 20$$

$$X + 7 = -5 \Rightarrow x + 0y + 7 = -5$$

64. Using the graph below, identify the domain, range, intervals of increasing, decreasing and/or constant. Then evaluate at the given values.

- a) Domain: (-00,00)
- b) Range: -2
- c) Increasing: (0,00)
- d) Decreasing: (-3, 6
- e) Constant: $(-\infty, -3)$

f)
$$f(-4) = -2$$

h)
$$f(2) = 2$$

i) If
$$f(x) = 2$$
, the $x = 2$

65. Write an equation to represent the piecewise function in number 64.

$$f(x) = \begin{cases} -2 & \text{if } x \leq -3 \\ -x + 4 & \text{if } -3 \leq x \leq 0 \end{cases}$$

66. Evaluate the piecewise function for
$$f(-2)$$
, $f(1)$, and $f(4)$.

rise function for f(-2), f(1), and f(4).
$$f(x) = \begin{cases} x^2 - 2x, & \text{if } x \le 1 \\ 3x + 1, & \text{if } x > 1 \end{cases}$$

$$f(1) = -1$$

 $f(4) = 13$

67. Graph the piecewise function from number 66 above.

68. You've probably noticed that as you ride a Ferris wheel, your distance from the ground varies sinusoidally with time. When the last seat is filled and the Ferris wheel starts, your seat is at the position shown in the diagram below. Let t be the number of seconds that have elapsed since the Ferris wheel started. You find that it takes you 5 seconds to reach the top, 56 feet above the ground, and that the wheel makes a revolution once every 12 seconds. The diameter of the wheel is 50 feet. Write an equation to represent this function (sine or cosine) and use it to predict your height above the ground after 10 seconds. 29.35

Sin R25 31 Rt.8
$$\frac{2\pi}{B} = \pi/c$$
 $y = 25\cos(\frac{\pi}{G}(x-8))+31$ COS 25 31 Rights $y = 25\cos(\frac{\pi}{G}(x-5))+31$

69. State the amplitude and period, phase shift and midline for the equation $y = -\cos\left(\frac{1}{2}\left(\theta - \frac{\pi}{2}\right)\right) - 2$ Phase Shift: Right 7/2

$$Pd = \frac{2\pi}{1/2} = 4\pi$$
 Midline: $y = -2$

70. Look back at the website www.afmfinance.weebly.com and review all the terms and concepts introduced in modules 1-5.

FORMULAS:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$n(t) = ne^{rt}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$m(t) = me^{-rt}$$

$$s = r\theta$$

$$A = Pe^{rt}$$

$$r = \frac{\ln 2}{\text{half a life}}$$

$$A = \frac{1}{2}r^2\theta$$

$$A = P(1 + \frac{r}{n})^{nt}$$